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1.0 SYSTEM DESCRIPTION 

A mathematical evaluation of an innovative wind-wheel turbine (WWT) 

to evaluate overall design features was carried out. The conceptual 

basis of the WWT* studied was conceived by Mr. John W. Kaufman, NASA, 

Marshall Space Flight Center, in April, 1976. 

The WWT apparatus is illustrated in Figures 1 through 4. The main 

parts of the WWT are: (1) a bladed wheel, (2) a main housing, (3) two 
forward ducts (front concentrators), (4) one duct on each side of the 

main housing (side concentrators), (5) an elevated base to support the 

functional parts of the WWT, and (6) an electrical/mechanical subsystem 

to be determined. The apparatus directs air (wind) onto the blades of 

the unexposed portion of a rotatable wheel through the multiple ducts 

and by direct impingement of wind onto the exposed top half of the 

bladed wheel, Figure 5. The forced rotation of the wheel can then be 

converted to power through appropriate subsystems. 

Air entering the forward scoop is divided and accelerated by two 

venturi tubes which funnel it upward to the blades. Air flowing across 

the top of these scoops impinges on the exposed blades at the top of the 

wheel. Air flowing past the sides is scooped into the venturi tube 

which turns it 180" and expels it against the blades at the bottom of 

the wheel. As the wheel turns, "used" air leaves an exhaust vent at the 

bottom. The WWT is mounted on a pivot so that it can "weather vane" to 

face the wind. 

Although wind-driven machines bearing some superficial resemblance 

to a water wheel have been developed in the past, the proposed concept 

has a certain distinguishing feature. The effectiveness of the machine 

will be improved by utilizing a number of fixed ducts to direct the wind 

from different directions onto the wheel. Ducts will be constructed 

.with diminishing cross sections to accelerate the wind consistent with 

thermodynamic constraints to increase power output. 

*United States Patent No. 4,191,505. 



Air / 

Figure 1 WWT preliminary design. 
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Figure 2 Side view of WWT. 
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Figure 3 Top view of WWT. 

Figure 4 Illustration of wheel of the WWT. 
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Figure 5 WWT internal/external airflow. 

It is generally concluded that without reaction blading a turbine 

of this type has the characteristic that the moving surface must always 

travel at a lower speed than that of the wind. The speed of revolution 

of the rotor is thus low, resulting in the need for a step-up gearbox 

when a high-speed electrical generator is to be driven. Analysis sug- 

gests that rotational speeds on the order of 25 to 30 rpm can be 

achieved, which is not appreciably less than that of existing wind 

energy systems. 

Two preliminary experimental studies of the wind-wheel concept have 

been carried out. Photographs of a paper model, Model #l, and of a 

stainless steel model, Model #2, are shown in Figures 6 and 7. Also, an 

analytical model has been developed and performance characteristics 

computed. 



e 6 Model #7 of the WW~ 
. 
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Figure 7 Model #2 of the WWT. 



A series of prel 

to the scale proposed 
lY iminary tests on two models, which were not exact 

in the preceding , were carried out. These tests 

2.0 EXPERIMENTAL STUDIES 

were made without funding and were in a sense a "makeshift" experiment. 

However, they have provided useful information that does demonstrate 

potential for the WWT. The results of these tests are described in the 

following paragraphs. First, a description of Model #l and test results 

are given. Model #2 is then described and its preliminary performance 

verification discussed. 

2.1 WWT Model #l Design and Test Results ~~---_ ------_ 

Model #l of the WWT (Figure 6) is made of paper and pasteboard. 

The only metallic parts of the model are two small bearings and a metal 

axle. The model stands approximately 36 cm (14 in): high. The disks 

on the side of the wheel have a diameter of 15.24 cm (6 in). The blades 

extend 0.95 cm (0.375 in) beyond the outer circumference of the outer 

wheel disks. The blades are 6 cm (2.36 in) in width and join at the 

small center axle point. The model is not to scale with respect to 

shape and size of the ducts, wheel, main housing, and other features. 

Limited testing of the paper model was carried out at low-speed 

airflow conditions. The model was exposed to airflow ranging from 1.7 

to 2.9 m s -1 where the air source was an overhead air-conditioning 

ventilation system. The flow was measured repeatedly during the tests 

by an anemometer manufactured by Hastings-Raydist, Inc., Hampton, 

Virginia. Figure 8 shows the number of WWT wheel revolutions per minute 

versus various exposure-geometry conditions. These WWT test conditions 

were: (1) all ducts open with airflow directed'onto the front of the 

WWT system; (2) the front ducts were covered with a fitted piece of con- 

struction paper; (.3) all ducts (front and side) were covered to allow no 

air to flow into the ducts; (4) all ducts were open (uncovered) and a 

hood made of construction paper was placed over the top half of the 

exposed wheel, allowing no air to flow directly onto the upper part of 

7 
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Figure 8 Revolutions of WWT (Model #l> wheel per minute versus various 
exposure-geometry conditions. 

the wheel; and (5) the WWT Model #l was turned 180" with respect to the 

mean wind direction. For each test condition, 30 one-minute samples of 

data were recorded. The number of revolutions were determined by count- 

ing the number of times an ink spot, marked on the outer edge of the 

wheel disk, appeared for a one-minute time period recorded with an 

electronic stop watch (Cronus 3-S, manufactured by Cronus Precision 

Products, Inc., Santa Clara, California). The arithmetic mean values 

were 'computed and are shown in Table 1 and in Figure 8. Table 1 also 

includes the ratio of the mean number of revolutions per minute of the 

wheel operating in an "all-ducts-open" normal mode (Condition #l> to 

the remaining four modes. It is interesting that the wheel turns in a 

normal rotational manner when the WWT model is turned backwards into the 

mean flow but only at one-fourth of the rotational speed. 

It is especially significant to note the improvement in performance 

due to the front ducts, although the advantage of,the side scoop appears 

marginal. Careful design of these is expected to enhance their effects. 
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TABLE 1 Minimum Mean ,* Maximum Number of WWT (Model #l) Wheel Revolutions 
Per Minute with Respect to Each Test Condition. 

WWT Test Condition 

._ ._ ._.__ -.- .~. -. __ 
1. All ducts open 

2. Front ducts covered 

3. All ducts covered 

4. All ducts open, hood 
over top half of wheel 

5. Under normal operation 
but WWT turned 180 degrees 
out of mean wind direction 

-- ~~ -~~ ~~__- ~__ ~____- .- - 

Min. Mean* 
- - 
101 112.6 

87 98.2 

85 96.2 

51 57.7 

24 29.2 
_- -.~- 

*Arithmetic mean of 30 one-minute data values. 

Wheel (rpm) 

Max. 

125 

110 

108 

Ratio 

Mean of Test #l 
Mean of Each Other 

1.00 

1.15 

1.17 

1.95 

3.86 

A special set of wheel speed data was acquired using Model #l 

which provides additional information as to how the wheel turns as it is 

positioned differently in regard to the mean wind direction. Figure 9 

shows the Model #l wheel revolutions per minute versus orientation of 

the model to the mean wind direction. The mean wind speed was measured 

at approximately 2 m s -1 -1 with a range of 1.5 to 2.4 m s . Again, these 

wind speed measurements were made with the Hastings' anemometer in the 

same air ventilation situation as used to obtain the data for Table 1. 

The model (with duct open) was turned 22.5" at a time to the mean 

wind direction to Position #g where the model faced 180" out of the mean 

flow. Again, 30 one-minute samples were taken at each position or 

orientation point. 

The data illustrated in Figure 9 show that the lowest number of 

wheel revolutions per minute was at the orientation of 112.5" to the 

mean wind direction. The interesting fact is that the wheel rotates 

regardless of its orientation to the mean flow. Also, the wheel rotates 

about four times faster when the WWT points into the flow than when it 

points 180" "out-of-phase" with the flow. 

9 
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Figure 9 WWT Model #l wheel revolutions per minute versus orientation 
to mean wind direction. 

2.2 WWT Model #2 Design and Test Results 

The stainless steel WWT Model #2 is shown in Figure 7. Again, the 

model is not built to the presently conceived proportions. 

A laboratory experiment was conducted with this model. Figure 10 

shows the basic equipment used to gather wheel spin-up, spin-down, and 

steady-state revolution data. The stop watch (Cronus Electronic Model 

3-S) and hand-held anemometer (Belfort Instrument Company, SM-C-367329) 

are not shown in Figure 10. The electronic counter was a Hewlett- 

Packard 5245L unit, the airflow meter was Parker-Hannifin, and the other 

apparatus consisted of standard laboratory items. A photocell pulse 

detector was made from off-the-shelf electronic components. After 

several trials to determine airflow speed, placement of the air source 

with respect to the model, stability in acquiring accurate revolutions 

of the wheel with time, etc., the experiment was conducted. It should 

be mentioned that the air pressure remained very stable throughout all 

testing, which made the results more accurate. To determine.airflow 

speed (wind speed in the figures to be discussed), the hand-held 
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Figure 10 Laboratory apparatus used to obtain spin-up, spin-down, and 
steady-state WWT (Model #2) wheel pulse per revolution data. 

anemometer was positioned approximately 40 cm away and directly in the 

mainstream of the jet (plume) of air. Measurements were made just prior 

to and after recording all data sets, and especially for similar groups 

of wheel turn data. To obtain the anemometer measurements, the air 

source was turned into the "open room" and measurements were not taken 

in front of or in line with any nearby obstacles. The laboratory air 

temperature remained approximately 25". C (78" F) throughout the testing. 

2.2.1 Model #2 Performance Data Acquisition. Model #2 is made of 

stainless steel (Figure 7). The overall weight of the model is approxi- 

mately 18 kg (40 lbs). It stands 35 cm (14 in) high, has a wheel that 

weighs approximately 2.25 kg (5 lbs), a blade length (i.e., radius of 

wheel) of 10 cm (3.9 in), a blade width of 6 cm (2.4 in), and an axle of 

0.7 mm in diameter. The wheel bearings were made by the Fafnir Bearing 

Company, New England, Connecticut. 

Three sets of data were acquired to determine the basic performance 

of the Model #2 wheel. These were spin-up, steady-state, and spin-down 

data. First, the wind speed required for the wheel to complete 20, 40, 
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and 60 revolutions starting from rest and as a function of mean wind 

speed (actually a jet or plume of air from a pressurized tank and 

nozzle) was determined. Figure 11 shows the raw data and fitted curves 

for these three conditions as well as the threshold start or breakaway 
-1 speed of 3.1 m s . As can be seen on the ordinate of Figure 11, it 

requires approximately 30 seconds in a 4 m s -1 mean wind speed to cause 

the wheel to rotate 20 times; whereas, it only takes 10 seconds for the 

wheel to rotate 20 revolutions in a 16 m s -1 mean wind speed. 

The steady-state rotational speed data and curve fit are shown in 

Figure 12. These data show the wheel revolutions per minute as a 

function of steady-state wind speed. The wheel threshold speed of 3.1 

ms -1 is also shown; however, the wheel rpm values are only given to 

about 650. The reason higher rpm values were not obtained for winds 

above 10 m s -1 was to avoid ball bearing heating. 

The third set of data consists of the wheel stop time or spin-down 

data. The data and curve fit are shown in Figure 13. It is interesting 

@ 20 Revolutions 
X 40 Revolutions 
0 60 Revolutions 

i -3.1 m s-' Wheel Threshold (start) Speed 

I , i , I I I I I I 
0 2 4 6 a 10 12 14 16 

Mean Wind Speed (m s") 

Figure 11 WWT wheel time to reach 20, 40, and 60 revolutions versus 
mean wind speed (Model #2). 
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Figure 12 WWT wheel revolutions per minute versus mean wind speed 
(Model #2). 

to note the appreciable difference in wheel slowdown time versus rpm. 

As shown, it takes approximately 500 seconds for the wheel to stop if it 

is given a constant rpm of 500, compared to approximately 400 seconds to 

stop when at a speed of 150 rpm. This indicates that the wheel has a 

very significant drag force to still air when rotating at high speeds. 

2.2.2 Analyses of WWT Model #2 Performance Data. The performance --~- 
of the WWT model can be estimated from the experiment observations in a 

straightforward manner. The torque, T, power, P, and coefficient of 
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Wheel Stop Time (s) 

Figure 13 WWT wheel initial revolutions (turn speed) versus stop time 
(Model #2). 

performance, Cp, for the WWT can be calculated from: 

T = Ia 

P = UT = wIa 

c =P= 21aw 
P I;lv; pAV3 

(1) 

(2) 

(3) 

where 8, U, and a are the wheel angular position, velocity, and accel- 

eration; p, tin, and V are the air density, mass flow rate, and velocity; 

and I is the turbine wheel moment of inertia. The experimental data of 

Figure 12 were least squares curve fit to the relation: 

-al al e=T+at+-e 
-a3t 

3 2 al 

The form of Equation 4 was chosen to produce the proper functional 

relationships at t = 0 and t = 0~ and substituting in Equation 3 yields 

14 



the following: 

cP 
I 

max = 2pAVS aom: (5) 

All of the variables in Equation 5 can be deduced from the test 

data taken except the capture area, A. Since the capture area was not 
measured, an approximate capture area of 75 percent of the WWT wheel 

peripheral area was used to calculate the values of power coefficient 

shown in Table 2. 

TABLE 2 Values of Power Coefficient Calculated from the Second WWT 
Model Test Data. 

V (m/s) 4.328 10.370 15.835 

cP 0.620 0.327 0.206 

These data show the WWT to be relatively efficient at low wind 

speeds and inefficient at high wind speeds. This behavior is a strong 

function of blade and flow passage geometry since a properly designed 

turbine should produce power coefficients near 0.85 (based on the 

actual mass flow rate) when operating at the design point for any 

reasonable design wind speed. 

The data from Figure 13 were investigated. It was determined that 

the largest portion of the decelerating force varied as a function of 

the square of the rotational speed which is what is to be expected for 

windage and pumping losses. A small amount of frictional drag is 

apparent from the wheel behavior below 100 seconds. This drag dramat- 

ically shortens the coast-down time but is not significant at higher 

rotational speeds. 

Results of this study, although very preliminary, do illustrate 

that the device has potential and that the system is a viable technique 

for converting the kinetic energy of the atmospheric wind into rota- 

tional energy. 

15 



3.0 ANALYTICAL STUDIES 

3.1 Performance Prediction Techniques 

The detailed performance analysis of the WWT is difficult since the 

WWT, as presently configured, does not fit into any one classical 

pattern. The device behaves somewhat like a simple water-paddle wheel 

and somewhat like an impulse gas turbine. A complete performance 

analysis of the WWT must consider the interaction between the inlet 

flow, the turbine wheel blade flow, and the turbine outlet flow. 

A preliminary analysis of the WWT performance, based on a simple 

engineering model described in the appendix, was carried out. Figure 14 

schematically illustrates the model. Only four blades are considered 

for simplicity; however, this is not expected to be the optimum number. 

The engineering model is represented effectively by three jets of wind 

acting on the turbine rotor. Jet 1 is the freestream wind speed, V,; 

jet 2, resulting from the front duct concentrator, has a speed of V2; 

and jet 3, resulting from the side scoops redirecting the flow onto the 

backside of the turbine rotor, has a speed of V3. The front duct will 

be constructed with a contoured configuration which will accelerate the 

flow. The acceleration is expressed by the ratio c2 = V2/Vl. Although 

detailed calculations are needed to determine the magnitude of c2, it 

is estimated that values between 7 and 2 are realistic. When c2 = 0, 

the duct is closed. 

Similarly, the velocity of flow impinging on the rear side of the 

blade from duct 3 is less than the freestream velocity due to the decel- 

eration caused by turning through 180". This deceleration is repre- 

sented by c3 = V3/Vl. To assign a specific value to c3 also requires 

detailed analysis; however, c3 will be less than unity and is estimated 

to lie between 0.1 and 0.5. Again, c3 = 0 represents a closed duct. 

Forces due to all three jets acting on the rotor create a torque 

which is expressed in coefficient form as: 

16 



Figure 14 Definition of jets and blade interaction. 

CT = 2 Torque/pwRVT 

where p is the density of the air, R is the radius of the rotor, w is 

the width of the wind turbine wheel, and V, is the freestream wind 

speed. 

The power coefficient of the WWT is then related to the torque 

coefficient by the relationship (see appendix, Equation A-6): 

cP' 
= ACT 

(6) 

(7) 

where X is the ratio of tip speed to freestream wind speed (i.e., X = 

wR/V,) and w is the rate of the angular rotation of the wind turbine 

wheel. The C p' given by Equation 6 is based on a flow area of wR. 

However, the actual area of the wind flow entering the various ducts is 

estimated as approximately 3.3 wR. Hence, 

cP 
= Cp'/3.3 (8) 

Values of Cp reported throughout this section are, therefore, based on 

an effective area of Ae = 3.3 wR. 

Computed values of Cp computed for the wheel at the angular posi- 

tion of 8 = 45" (see Figure 14) for given values of the tip speed ratio 

are shown in Figure 15. This figure illustrates the influence of the 

front duct venturi, which produces a significant increase in the C 
P 

values. These values of Cp are thus competitive with conventional 

propeller-type wind turbine generators. The influence of the air drawn 

17 
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Figure 15 Computed influence of accelerated flow through front duct. 

in through the side scoops is relatively small is also indicated in the 

figure. Therefore, throughout the remainder of this section, a value of 

53 = 0.1 has been used. It is anticipated that through careful design 

of the front venturi duct, values of c2 = 2 can realistically be obtained. 

Figure 16 shows how the value of Cp varies with rotor angular 

position. The data are plotted only for 8 ranging from 0" to 90" since 

a four-bladed rotor Cp varies cyclically with a period of 90". The 

nonuniformity of Cp with angular rotation can be reduced by utilizing 

additional blades on the wind turbine wheel. 

It should be noted that low tip speed ratio devices such as the WWT 

generally have high coefficients of torque associated with them. Figure 

17 illustrates the starting coefficient of torque for various values of 

acceleration through the front concentrator. The starting torque is 

very high and demonstrates a good characteristic of the system for 

applications to pumping and other mechanical subsystems requiring high 

torque. 
18 
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Figure 17 Computed influence of flow through front duct on starting torque. 
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Figure 18 illustrates how the torque varies on an individual blade 

throughout a complete 360" rotation. Relatively high cyclic loading 

occurs which will be a fatigue factor that must be carefully considered 

in the blade design. This cyclic loading, however, is no greater than 

that of a conventional propeller rotor. Moreover, the wind turbine 

wheel will be less susceptible to high fatigue moments because of the 

sturdier construction of each blade as contrasted to the cantilever 

construction of propeller-type rotors. 

A comparison of the performance of the WWT relative to other 

systems is shown in Figure 19. The shaded area illustrates the range of 

Cp's that is potentially achievable from the innovative system. Although 

careful study is required to verify the exact curve, the WWT is compe- 

titive in terms of Cp coefficients for other systems. 

The analysis given in the appendix includes several simplifying 

assumptions that must be relaxed for a more rigorous analysis. For 

example, the flow over the blades requires a momentum balance rather 

80 120 160 200 240 280 320 360 

8 degrees 

Figure 18 Influence of front concentrator on torque of individual blade. 
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Figure 19 Comparison of the performance of several wind machines. 

than simply relating force to the square of the relative velocity. The 

momentum balance will indicate the momentum loss due to escaping air and 

thus define the required exhaust ports. Figure 20 illustrates some 

simple concepts for reducing the back pressure on the airflow while 

retaining the major portion of the momentum for transferring force to 

the blade. 
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Figure 20 Concepts for exhausting airflow. 

Boundary layer effects must also be considered. These will result 

in additional loss of momentum on the blade due to friction forces. The 

boundary layer build-up and the momentum transfer will then identify the 

optimum blade configuration required to provide the most efficient flow 

and thus transmit the highest force possible. Boundary layer analysis 

must also be applied to the friction drag created by the fluid flow 

between the plate and the supporting walls. This analysis will indicate 

the optimum distance between the rotating wheel and the supporting side 

walls. 

3.2 Inlet Duct Analysis 

The inlet duct analysis of an existing device should predict the 

gross flow of the air in the ducts as well as identify problem areas 

such as boundary layer blockage and separation. The one-dimensional 

flow assumption is a good first approximation, and laminar or turbulent 

boundary layer blockage can be approximated by use of the semi-empirical 

relations found in Reference 1. The blockage problem can be treated by 

adding the boundary layer displacement thickness to the required ducting 

inviscid contours. One method of treating boundary layer separation 

is to bleed a small amount of low-energy boundary layer air from the 

inlet duct. This causes an additional drag load on the WWT assembly 

which must be resisted by the tower and also requires the inlet ducts to 

be slightly larger than would be otherwise necessary but results in 

increased power for a fixed size wind turbine wheel. 
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3.3 Turbine Blade Analysis 

The Euler turbine equation, taken from Reference 2, which describes 
the energy, E, that can be extracted from a unit mass is applicable to 

both the impulse and reaction turbines: 

E = ; [(vi - $1 + (uf - ly + (v2 - v2 )] 
r2 rl 

(9) 

where V is the absolute velocity, V, is the velocity relative to the 

blade, and u is the blade velocity. The subscripts 1 and 2 refer to the 

inlet and outlet. The turbine geometry is shown schematically in Figure 

21. The performance of the WWT model could be estimated using the Euler 

equation if suffic.ient'information had been gathered concerning the 

geometry of the flow path into and out of the turbine wheel. The degree 

of reaction is defined as: 

; cm; - u;, + (v2 - v2 )] 
R= r2 rl 

E (10) 

If the variation in radius is ignored so that Ul = U2, the degree 

of reaction is seen to be a .measure of how much of the available energy 

extraction is associated with a kinetic energy change of the working 

fluid in the rotor. For Vrl = Vr2, R = 0 and we have an impulse turbine. 

The impulse turbine is important because it is the only class of turbine 

in which there is no static pressure change in the rotor; hence, the 

rotor may be open, i.e., no side walls. Pelton wheels and paddle 

wheels are impulse turbines; the first having a high efficiency, the 

second a low efficiency. 

An advantage of using the Euler equation to help design the WWT 

blades as impulse blades is that we can easily see how the blade proper- 

ties affect performance. The velocity diagram approach can be used to 

suggest improvements to the current WWT design and to illuminate the 

limitations imposed by gas dynamics upon the maximum tip speed ratio and 

wind concentration factor of an impulse-type turbine. The impulse 

turbine simply turns the flow as much as possible to extract as much 

energy from each pound (kilogram) of flowing gas as is possible and 
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Figure 21 General impulse turbine blade nomenclature. 

still manage to pass the efflux out of the turbine exit. Properly 

designed, impulse turbines are extremely efficient in terms of extract- 

ing the energy from the gas. Considering the blade force, Fb, and 

power, P: 

Fb = i(v, cos a 1 - u1 + cos cx2v2 + u2) (11) 

P = r;lw(Vl cos cq - Ul)Rl + (V2 cos cz2 + U2)R2] (12) 

or 

P = w; cos2 al(l - h)X + u2(cos cX2v2 + u,)] (13) 

where x is the tip speed ratio Vl/Ul. Ignoring the exit energy tempo- 

rarily, it can be shown that the power coefficient: 

cpL= 
I$ 

2 cos2 $1 - X)A (14) 
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can be maximized by setting a1 = 0 and x = 0.5. The fact that the Cp 
approaches 1 as the total power approaches 0 is somewhat discouraging 

but expected since: 

P = 21~pWvpR~(l - A)X sin a1 cos2 aa (15) 

An alternate approach is to maximize the power for a given turbine 

wheel regardless of the resulting power coefficient. This would tend to 
maximize the return on investment in the expensive rotating parts. This 
can be achieved by maximizing the sin a1 cos2 a1 term in Equation 15 

which results in an optimum a 
1 = 35.26”. 

A comparison of the power obtained at 35" inlet angle to that 

obtained at some lower angle such as 12" shows that the same diameter 

turbine will produce 1.95 times the power with the blades configured for 

a 35" entry angle than for a 12" entry angle. The 35" blade configura- 

tion loses approximately 18 percent in efficiency (C,) but gains by a 

factor of 2.77 in flow rate. The 35" entry angle will produce a larger 

turbine exit velocity than the 12" configuration. This lost kinetic 

energy can be utilized to energize the exit duct flow to increase turbine 

inlet velocity by use of a turbine exit diffuser as discussed in Section 

3.4. 

Of course, the flow in the existing MSFC WWT is not two-dimensional. 

The WWT turbine wheel could be modified to turn the flow as in a Pelton 

wheel as is shown in Figure 20. The Euler turbine equation could also 

be used to evaluate the performance of such a device with good accuracy 

if the exit flow path could be estimated or measured. 

In any case, the important consideration in turbine design is to 

make provisions for the turbine outflow air so that it may move smoothly 

into the exhaust duct or plenum. 

3.4 Exhaust Considerations 

As a first step in improving the WWT performance, it has already 

been suggested that the turbine wheel hub area be opened to allow the 

low-energy exhaust air to escape the turbine wheel as is shown in Figure 

20. The flow of the exhaust gas must be modeled accurately to determine 

the full effect of exhaust restrictions on the WWT performance. 
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The application of inlet flow intensifiers to increase the perfor- 

mance of the wind turbine is dependent upon the use of some device to 

lower the turbine exit pressure. The actual benefit that can be derived 

from an intensifier is a function of the turbine exhaust duct geometry 

and location. Th?s can be better understood by considering Figure 22. 

The air enters the inlet intensifier and is assumed to accelerate from 

velocity Vl to V2, the velocity ratio being controlled by the area 

ratio. The resulting Cp increases by the ratio of (V2/V1)2. 

c = 
2liql - A)X 9 

P lilV2 
= 4(1 - X)A r 

1 1 
(16) 

The air pressure in the inlet duct decreases as the velocity 

increases since its total pressure is constant and remains constant, 

ideally, as it flows through the impulse turbine. If a constant area 

exhaust duct is used, the gas will be dumped at the exhaust duct exit at 

the same static pressure as exists at the exit of the inlet duct. Unless 

a deliberate effort has been made to locate the duct exit in a low 

‘%a Inlet Nozzle 

Figure 22 Impulse turbine exhaust effects. 
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pressure area, then P3 = Pl and the exhaust pressure is equal to the 

ambient static pressure. Thus: 

pl = P3 = Pl + 3 (v$ - v;, ; VP = v, (17) 

Therefore, the turbine inlet velocity can be increased only if the 

exhaust duct static pressure is reduced or if an effective exhaust 

diffuser is used. 

A low pressure area does exist in the lee of the flow behind the 

turbine housing. A review of the existing literature on base drag 

indicates that a base pressure coefficient as low as -0.5 has been 

obtained. Assuming the base pressure coefficient of -0.3 reduces the 

pressure by -0.3 times the dynamic pressure which propagates through the 

ducts and turbine as a turbine inlet velocity increase of: 

“$ =cp= 1.3 vf c 
PO 

08) 

Summarizing the above design discussion, the dimensions of the 

ducted wind turbine can be reduced by 28.1 percent while maintaining the 

same power output if the turbine inflow angle is optimized. Similarly, 

the use of exhaust diffusers and inlet flow intensifiers can increase 

the power coefficient by as much as 30 percent, which would allow an 

additional 12.3 percent reduction in linear size. Use of both of these 

options would produce a linear size reduction of 36.8 percent which 

translates into a surface area reduction of approximately 60 percent. 

Since surface areas are closely related to costs, it is obvious that the 

optimization of the WWT geometry can produce extremely significant 

results and therefore should be investigated thoroughly. 

3.5 Other Design Considerations 

The final WWT wheel design will be the result of a number of trade- 

off studies between the shape of blades, number of blades, the use of 

stator blades, size, etc. Variable pitch stator blades may be used to 

control the wheel speed to produce constant frequency (i.e.,' constant 

rpm) power even in high winds. 
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Components and subcomponents of the WWT must be sized so that they 

do not vibrate at matched frequencies. This will be easier to do for 

the WWT than for the propeller-type wind turbine since the WWT blade 

shape can be changed independently of the WWT wheel structural 

arrangement. 

The WWT wheel bearings present a much simpler design problem than 

the bearing design for a propeller-type windmill. In its ultimate 

configuration as a 360" inflow turbine, the WWT blade forces will 

balance each other and exert only a torque on the wheel which in itself 

produces no load on the bearing. If the power is taken off at the wheel 

periphery by a belt or chain, this torque will impose a relatively low 

reaction force on the bearing due to the large radius. Calculations 

show that the bearings will have to react'to the major load of the 

turbine wheel weight. There will be virtually no side load or thrust on 

the bearings since the transverse air loads are balanced. The propeller 

gearbox, on the other hand, has high radial loads due to its small size 

and high axial loads since the propeller drag load must be reacted by 

the propeller thrust bearing. The WWT drag load is equal to the propel- 

ler drag load for similar power output but is reacted only by the pivot 

bearing, which is not in a critical airflow region and can be sized to 

achieve an optimum cost/benefit ratio. 

A careful performance analysis is required relative to coupling the 

device with the electrical power generator or the mechanical subsystems. 

This analysis will establish the size, weight, necessary speed controls, 

mounting height, and other design parameters from which a detailed cost 

and performance comparison with a competitive-size conventional wind 

energy system can be carried out. 

3,6 Performance Comparison 

An idea of the performance of the WWT relative to other types of 

wind energy conversion devices can be obtained by comparing their 

performance on the basis of power coefficient, Cp, as is done in Figures 

19 and 23. The device most like the WWT, the impulse turbine, has a 

peak ideal Cp of 1 at a tip speed ratio of 0.5. In practice, the 

impulse turbine can only realize about 85 to 90 percent of this ideal 

28 



cP 
- 0.60. c 

P 
n 0.45 

Figure 23 A comparison of the size of the rotating parts of several 
wind energy extraction devices. 

performance in order to limit the diameter of the device due to viscous 

losses, etc. The potential of the WWT experimental blade arrangement, 

as noted earlier, is also shown in Figure 19. The salient difference 
between the WWT and impulse turbine is that the WWT has a lower coeff'i- 

cient of performance that is due to relatively rudimentary internal 

inlet ducting and the poor treatment of the exhaust gas flow. The 

apparent advantage of having a positive Cp at values of the tip speed 

ratio between 1 and 1.35 is believed to be due to the inlet air being 

directed at a point on the turbine wheel that is 0.74 (i.e., l/1.35), 

times the full WWT radius. The improvements in the WWT internal airflow 

discussed in this paper are expected to increase the efficiency of the 

WWT and produce a Cp curve more characteristic of an impulse turbine. 

The relative diameters of a WWT turbine wheel, propeller, and 

Darrieus rotor, having Cp 's of 0.6, 0.45, and 0.35, respectively, will 

be 1, 1.4, and 1.6 based on the WWT diameters as shown graphically in 

Figure 23. We may conclude from this that the WWT rotating parts are 

smaller and perhaps cheaper than for these competitive systems. 

Finally, based on the preceding discussions the projected perfor- 

mance of a 5 kw and 20 kw WWT was computed. Figure 24 shows the results 

of this comparison. The performance of the WWT based on rated wind 

speeds of 12 mph and 25 mph are seen to be comparable with that of 

conventional propeller-type wind generators. For the 5 kw machine the 

projected power curve was integrated over the annual wind speed distri- 

bution based on the Weibull distribution: 
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Power: 5 kw Power: 20 kw 

Conditions: V = 5.36 mps (12 mph) Conditions: V = 11.2 mps (25 mph) 

D = 40 m D=6m 

W/D = 0.375 W/D = 0.2 

OG = 0.95 nG = 0.95 

cP 
= 0.6 

cP 
= 0.4 

A= 16.26 m2 A = 6.7 m2 

8 = 35" 

WWT Blade 

A = W/D nD2 sin 8 = flow capture area 

0 = average turbine entry angle 

Figure 24 Projected performance. 

P(V, 2 V> = w[-(V/Cr)krl 

w, 1 VI = probability Vr z V 

where V, is the steady wind speed at reference elevation (m/s), V is the 

prescribed value of steady wind speed (m/s), C, is the Weibull scale 

factor at reference elevation (m/s), and k, is the Weibull shape factor 

at reference elevation. The subscript r indicates the parameter is 

evaluated at the reference elevation of 10 m. The empirical Weibull 

constants C, andk, wi1-1 be 5.4 and 2.27 m/s, respectively, defining a 

siting with a yearly mean wind speed of 5.4 m/s (12 mph) at 9.1 m. The 

predicted annual output of the wind turbine is 57,816 kw hours. 
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4.0 CONCLUSIONS 

An analysis of the WWT has been carried out. Sufficient infor- 

mation has been provided that specifications for a final design of a 

functional turbine using off-the-shelf parts and components could be 

made. This design can now avoid special engineering design and develop- 

ment tasks which are unnecessary and costly; however, final performance 

of the system can only be determined by field testing a prototype unit. 

The conclusion of this study is that the wind-wheel turbine is a 

viable system offering a number of inherent advantages over a conven- 

tional system. Some of these are: 

l Wind-wheel turbines with ducted wind concentrators provide 
Cp's comparable to other conventional wind turbine systems. 

l Wind-wheel turbines produce power at low rpm; hence, low 
vibratory stress, long fatigue life. 

l Wind-wheel turbines produce high torque useful for driving 
pumps and other high-torque mechanical systems. 

l Equivalent power output may be achieved with the wind-wheel 
turbines at lower costs and less risk than competitive 
systems due to inherently simple construction. 

From the results of the study, it is recommended that a prototype 

system of a roughly 20 to 25 kw power capability be built and field 

tested. 
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APPENDIX 

PRELIMINARY PERFORMANCE ANALYSIS 

The torque and power coefficients for a straight four-bladed wind-wheel 
are estimated. Consider the wind-wheel with three wind jets Vl, V2, and 
V3 acting upon it as shown in Figure A-l. The forces acting on blades 
A, B, C, and D will be different in each quadrant but will repeat in 
subsequent quadrants. Therefore, the forces acting on each blade during 
a 90" arc need only be calculated. Table A-l shows typical values of 
the torque coefficient for the blades individually and as a total. The 
torque coefficient is defined as 

cT = Torque/pV12wR2/2 (A-1 ) 

Calculation of these forces is straightforward but care must be taken to 
assure that all interaction of the blades and jets are taken into 
account. 

Starting from 8 = 0, blade B is acted upon only be jet 1. After a 45" 
rotation, it is shielded by blade A. During the remaining 45" of travel 
of blade B, it has a negative force resulting from displacing the air in 
front of it at a speed of r-w. The expression for CTB is: 

cTB 
= I4 + I5 

where 

Figure A-l Definition of jets and blade interaction. 
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Table A-l Representative Results of Computed Performance 
Characteristics. 
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1 

14 = 2 I I cos 8 - Arl(cos 8 - tan 0 xF)FdF 1 

15 = -2 
tan 6 

; 0 < 8 < 45”; r = ; - a 

I 
hzF3dF = -X2 tan4e 

2 
0 / 

I4 =0 
(A-2) 

I5 = -2 

; 45” < 8 c 90” 
1 

- - 

I 
$;3& = _ ??m 

2 
0 / 

Blade C 
turning 

experiences a force due to jet 3 only. This jet results from 
the air through a 180" by the side ducts and a large portion of 

the wind velocity will be lost. 
v3 = 

The velocity of jet 3 is therefore 
<3Vl, where 53 is a small factor. The equation for blade C is: 

'TC = '6 

where 

1 

I6 = 2 I )c3 sin 8 - xFl(c3 sin 8 - Ar)Fdr; 0 2 8 5 90" (A-3) 
0 

Blade D is initially acted upon by jet 3 exactly as blade B. After 
45" of rotation, jet 3 no longer acts on blade B; however, at that point 
jet 2, the air being ducted in from the front and turned through a 45" 
angle, begins to interact with blade D. This action continues through 
the remaining 45" of the blade travel. The expression for CTD is 

cTD = I7 + I8 

where 

1 

I7 = 2 I I c3 cos 8 - G](s3 cos 0 - x;;);dk; 0 5 8 2 45" (A-4) 
tan 8 

I7 = 0; 45” _ _ < 8 < 900 

‘8 = 0; 0 < 8 < 450 - - 
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I8 = 2 1C2 Sin(45” - 8) - xr1(~.~ sin(45" - e) - AF)rdr ; 45" 2 e 2 90" 

Blade A has the most complicated interaction being acted upon by jets 1 
and 2 simultaneously. It is assumed in this simple analysis that the 
wind speed from jet 1 and that from jet 2 can be superimposed over the 
portion of the blade upon which they impinge. The velocity of jet 2 is 
anticipated to be higher than that of jet 1 due to the fact that it has 
passed through a venturi and accelerated. Thus, V2 = r;2VT where 52 > 1. 
The expression for CTA is given by: 

cTA 
= I, + I2 + I3 

where 

I, = 0; 0 < 8 < 45” - - 

tan1450 - el 

I, = 2 I [sin 8 - Arl(sin 8 - xF)Fdr; 45" 5 8 2 90" 

0 

cos 45”/cos~45” - el 
I2 = 2 

i 
lsin 8 + c2 ~0~145~ - 01 - xFl(sin 8 + 

LB 

c2 ~0~145~ - el - xF)rdr (A-5) 

where 

i 

0; 0 < e < 45” 
LB= -- 

tan 45” - el; 45” c 8 < 90” - - 

1 
I3 = 2 I sin 8 - xFl(sin 8 - xF)FdF; 0 c - e < - 90" 

cos 45”/cos 145” - 8 1 

To determine the overall torque coefficient for the four-bladed wheel 
the torque coefficients for each blade are summed. The torque varies 
cyclically over a 90" period of rotation. 

Power coefficients for the WWT may be computed directly from the torque 
coefficient as follows: 

Power = w = Torque 

cP 
= Power/(rViwR/P) (A-6) 
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substituting Equation 1 gives 

cp = ACT 

The integral form of Equations A-2 through A-5 were integrated numer- 
ically with a Simpson's rule integration scheme for a range of the 
parameters A, X2, 13, and B. 
Figures 15 through 18. 

Some of these results are plotted in 
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IS. ABSTRACT 

An analytical and experimental study of an innovative wind-wheel turbine (WWT] 
is reported. Evaluation of the probable performance, possible practical applicatior 
and economic viability as compared to other conventional wind energy systems is 
discussed. The WWT apparatus is essentially a bladed wheel which is directly 
exposed to the wind on the upper half and exposed to wind through multiple ducting 
on the lower half. The multiple ducts consist of a forward duct (front concentrator 
and two side ducts (side concentrators). The forced rotation of the wheel is then 
converted to power through appropriate subsystems. 

Results of a series of preliminary tests on two simple models, a paper model 
(Model #l) and a stainless steel model (Model #2), are reported. Measured values 01 
power coefficients over wind speeds ranging from 4 to 16 m/s are given. An analyti- 
cal model of a four-bladed wheel is also developed. 

Overall design features of the wind turbine are evaluated and discussed. 
Turbine sizing is specified for a 5 and 25 kW machine. Suggested improvements to 
the original design to increase performance and performance predictions for an 
improved WWT design are given. 
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